Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst†‡

نویسندگان

  • V. Sara Thoi
  • Hemamala I. Karunadasa
  • Yogesh Surendranath
  • Jeffrey R. Long
  • Christopher J. Chang
چکیده

We recently reported the catalytic generation of hydrogen from water mediated through the in situ reduction of the molybdenum(IV)–oxo complex [(PY5Me2)MoO] 2+ (1; PY5Me2 1⁄4 2,6-bis(1,1-bis(2pyridyl)ethyl)pyridine) at a mercury electrode. To gain further insight into this unique molecular motif for hydrogen production, we have now examined the competence of this complex for the catalytic reduction of protons on an alternative electrode material. Herein, we demonstrate the ability of the molybdenum–oxo complex 1 to reduce protons at a glassy carbon electrode in acidic organic media, where the active catalyst is shown to be diffusing freely in solution. Cyclic and rotating disk voltammetry experiments reveal that three reductive electrochemical processes precede the catalytic generation of hydrogen, which occurs at potentials more negative than 1.25 V vs. SHE. Gas chromatographic analysis of the bulk electrolysis cell headspace confirms that hydrogen is generated at a Faradaic efficiency of 99%. Under pseudo-first order conditions with an acid-tocatalyst ratio of >290, a rate constant of 385 s 1 is calculated for the reduction of acetic acid in acetonitrile. Taken together, these data show that metal–oxo complex 1 is a competent molecular motif for catalytic generation of hydrogen from protons under soluble and diffusion-limited conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative desulfurization of light fuel oil by using hydrogen peroxide in the presence of acetic acid catalyst

Hydrogen peroxide as an oxidant agent was used for desulfurization of a petroleum hydrocarbon fraction (C10-C22) with boiling range of 175-375 ℃, (light fuel oil) in the presence of acetic acid as catalyst. The oxidation was performed in an ultrasonic bath. It is found that increasing the amount of hydrogen peroxide lead to increase the oxidation rate and so desulfurizatio...

متن کامل

A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability.

This work describes a highly active and stable acid activated carbon fibre and amorphous MoS(x) composite hydrogen evolution catalyst. The increased electrochemical-surface area is demonstrated to cause increased catalyst electrodeposition and activity. These composite electrodes also show an improved stability towards the mechanical degradation of the MoS(x) catalyst.

متن کامل

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012